Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Jose León Mengíbar in
Google Scholar
PubMed
Search for other papers by Ismael Capel in
Google Scholar
PubMed
Search for other papers by Teresa Bonfill in
Google Scholar
PubMed
Search for other papers by Isabel Mazarico in
Google Scholar
PubMed
Search for other papers by Laia Casamitjana Espuña in
Google Scholar
PubMed
Search for other papers by Assumpta Caixàs in
Google Scholar
PubMed
Search for other papers by Mercedes Rigla in
Google Scholar
PubMed
Summary
Durvalumab, a human immunoglobulin G1 kappa monoclonal antibody that blocks the interaction of programmed cell death ligand 1 (PD-L1) with the PD-1 and CD80 (B7.1) molecules, is increasingly used in advanced neoplasias. Durvalumab use is associated with increased immune-related adverse events. We report a case of a 55-year-old man who presented to our emergency room with hyperglycaemia after receiving durvalumab for urothelial high-grade non-muscle-invasive bladder cancer. On presentation, he had polyuria, polyphagia, nausea and vomiting, and laboratory test revealed diabetic ketoacidosis (DKA). Other than durvalumab, no precipitating factors were identified. Pre-durvalumab blood glucose was normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. Simultaneously, he presented a thyroid hormone pattern that evolved in 10 weeks from subclinical hyperthyroidism (initially attributed to iodinated contrast used in a previous computerised tomography) to overt hyperthyroidism and then to severe primary hypothyroidism (TSH: 34.40 µU/mL, free thyroxine (FT4): <0.23 ng/dL and free tri-iodothyronine (FT3): 0.57 pg/mL). Replacement therapy with levothyroxine was initiated. Finally, he was tested positive for anti-glutamic acid decarboxylase (GAD65), anti-thyroglobulin (Tg) and antithyroid peroxidase (TPO) antibodies (Abs) and diagnosed with type 1 diabetes mellitus (DM) and silent thyroiditis caused by durvalumab. When durvalumab was stopped, he maintained the treatment of multiple daily insulin doses and levothyroxine. Clinicians need to be alerted about the development of endocrinopathies, such as DM, DKA and primary hypothyroidism in the patients receiving durvalumab.
Learning points:
-
Patients treated with anti-PD-L1 should be screened for the most common immune-related adverse events (irAEs).
-
Glucose levels and thyroid function should be monitored before and during the treatment.
-
Durvalumab is mainly associated with thyroid and endocrine pancreas dysfunction.
-
In the patients with significant autoimmune background, risk–benefit balance of antineoplastic immunotherapy should be accurately assessed.
Search for other papers by Katia Regina Marchetti in
Google Scholar
PubMed
Search for other papers by Maria Adelaide Albergaria Pereira in
Google Scholar
PubMed
Search for other papers by Arnaldo Lichtenstein in
Google Scholar
PubMed
Search for other papers by Edison Ferreira Paiva in
Google Scholar
PubMed
Summary
Adrenacarcinomas are rare, and hypoglycemic syndrome resulting from the secretion of insulin-like growth factor II (IGF-II) by these tumors have been described infrequently. This study describes the case of a young woman with severe persistent hypoglycemia and a large adrenal tumor and discusses the physiopathological mechanisms involved in hypoglycemia. The case is described as a 21-year-old woman who presented with 8 months of general symptoms and, in the preceding 3 months, with episodes of mental confusion and visual blurring secondary to hypoglycemia. A functional assessment of the adrenal cortex revealed ACTH-independent hypercortisolism and hyperandrogenism. Hypoglycemia, hypoinsulinemia, low C-peptide and no ketones were also detected. An evaluation of the GH–IGF axis revealed GH blockade (0.03; reference: up to 4.4 ng/mL), greatly reduced IGF-I levels (9.0 ng/mL; reference: 180–780 ng/mL), slightly reduced IGF-II levels (197 ng/mL; reference: 267–616 ng/mL) and an elevated IGF-II/IGF-I ratio (21.9; reference: ~3). CT scan revealed a large expansive mass in the right adrenal gland and pulmonary and liver metastases. During hospitalization, the patient experienced frequent difficult-to-control hypoglycemia and hypokalemia episodes. Octreotide was ineffective in controlling hypoglycemia. Due to unresectability, chemotherapy was tried, but after 3 months, the patient’s condition worsened and progressed to death. In conclusion, our patient presented with a functional adrenal cortical carcinoma, with hyperandrogenism associated with hypoinsulinemic hypoglycemia and blockage of the GH–IGF-I axis. Patient’s data suggested a diagnosis of hypoglycemia induced by an IGF-II or a large IGF-II-producing tumor (low levels of GH, greatly decreased IGF-I, slightly decreased IGF-II and an elevated IGF-II/IGF-I ratio).
Learning points:
-
Hypoglycemyndrome resulting from the secretion of insulin-like growth factor II (IGF-II) by adrenal tumors is a rare condition.
-
Hypoinsulinemic hypoglycemia associated with hyperandrogenism and blockage of the GH–IGF-I axis suggests hypoglycemia induced by an IGF-II or a large IGF-II-producing tumor.
-
Hypoglycemia in cases of NICTH should be treated with glucocorticoids, glucagon, somatostatin analogs and hGH.