Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Yuri Tanaka in
Google Scholar
PubMed
Search for other papers by Taisuke Uchida in
Google Scholar
PubMed
Search for other papers by Hideki Yamaguchi in
Google Scholar
PubMed
Search for other papers by Yohei Kudo in
Google Scholar
PubMed
Search for other papers by Tadato Yonekawa in
Google Scholar
PubMed
Search for other papers by Masamitsu Nakazato in
Google Scholar
PubMed
Summary
We report the case of a 48-year-old man with thyroid storm associated with fulminant hepatitis and elevated levels of soluble interleukin-2 receptor (sIL-2R). Fatigue, low-grade fever, shortness of breath, and weight loss developed over several months. The patient was admitted to the hospital because of tachycardia-induced heart failure and liver dysfunction. Graves’ disease with heart failure was diagnosed. He was treated with methimazole, inorganic iodide, and a β-blocker. On the day after admission, he became unconscious with a high fever and was transferred to the intensive care unit. Cardiogenic shock with atrial flutter was treated with intra-aortic balloon pumping and cardioversion. Hyperthyroidism decreased over 10 days, but hepatic failure developed. He was diagnosed with thyroid storm accompanied by fulminant hepatitis. Laboratory investigations revealed elevated levels of sIL-2R (9770 U/mL). The fulminant hepatitis was refractory to plasma exchange and plasma filtration with dialysis, and no donors for liver transplantation were available. He died of hemoperitoneum and gastrointestinal hemorrhage due to fulminant hepatitis 62 days after admission. Elevated circulating levels of sIL-2R might be a marker of poor prognosis in thyroid storm with fulminant hepatitis.
Learning points:
-
The prognosis of thyroid storm when fulminant hepatitis occurs is poor.
-
Liver transplantation is the preferred treatment for fulminant hepatitis induced by thyroid storm refractory to plasma exchange.
-
Elevated levels of soluble interleukin-2 receptor might be a marker of poor prognosis in patients with thyroid storm.
Search for other papers by C Kamath in
Google Scholar
PubMed
Search for other papers by J Witczak in
Google Scholar
PubMed
Search for other papers by M A Adlan in
Google Scholar
PubMed
Section of Endocrinology, Department of Medicine, Ysbyty Ystrad Fawr, Caerphilly, UK
Search for other papers by L D Premawardhana in
Google Scholar
PubMed
Summary
Thymic enlargement (TE) in Graves’ disease (GD) is often diagnosed incidentally when chest imaging is done for unrelated reasons. This is becoming more common as the frequency of chest imaging increases. There are currently no clear guidelines for managing TE in GD. Subject 1 is a 36-year-old female who presented with weight loss, increased thirst and passage of urine and postural symptoms. Investigations confirmed GD, non-PTH-dependent hypercalcaemia and Addison’s disease (AD). CT scans to exclude underlying malignancy showed TE but normal viscera. A diagnosis of hypercalcaemia due to GD and AD was made. Subject 2, a 52-year-old female, was investigated for recurrent chest infections, haemoptysis and weight loss. CT thorax to exclude chest malignancy, showed TE. Planned thoracotomy was postponed when investigations confirmed GD. Subject 3 is a 47-year-old female who presented with breathlessness, chest pain and shakiness. Investigations confirmed T3 toxicosis due to GD. A CT pulmonary angiogram to exclude pulmonary embolism showed TE. The CT appearances in all three subjects were consistent with benign TE. These subjects were given appropriate endocrine treatment only (without biopsy or thymectomy) as CT appearances showed the following appearances of benign TE – arrowhead shape, straight regular margins, absence of calcification and cyst formation and radiodensity equal to surrounding muscle. Furthermore, interval scans confirmed thymic regression of over 60% in 6 months after endocrine control. In subjects with CT appearances consistent with benign TE, a conservative policy with interval CT scans at 6 months after endocrine control will prevent inappropriate surgical intervention.
Learning points:
-
Chest imaging is common in modern clinical practice and incidental anterior mediastinal abnormalities are therefore diagnosed frequently.
-
Thymic enlargement (TE) associated with Graves’ disease (GD) is occasionally seen in view of the above.
-
There is no validated strategy to manage TE in GD at present.
-
However, CT (or MRI) scan features of the thymus may help characterise benign TE, and such subjects do not require thymic biopsy or surgery at presentation.
-
In them, an expectant ‘wait and see’ policy is recommended with GD treatment only, as the thymus will show significant regression 6 months after endocrine control.
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Athanasios Fountas in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Shu Teng Chai in
Google Scholar
PubMed
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by John Ayuk in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Neil Gittoes in
Google Scholar
PubMed
Search for other papers by Swarupsinh Chavda in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Departments of Endocrinology and Radiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Niki Karavitaki in
Google Scholar
PubMed
Summary
Co-existence of craniopharyngioma and acromegaly has been very rarely reported. A 65-year-old man presented with visual deterioration, fatigue and frontal headaches. Magnetic resonance imaging revealed a suprasellar heterogeneous, mainly cystic, 1.9 × 2 × 1.9 cm mass compressing the optic chiasm and expanding to the third ventricle; the findings were consistent with a craniopharyngioma. Pituitary hormone profile showed hypogonadotropic hypogonadism, mildly elevated prolactin, increased insulin-like growth factor 1 (IGF-1) and normal thyroid function and cortisol reserve. The patient had transsphenoidal surgery and pathology of the specimen was diagnostic of adamantinomatous craniopharyngioma. Post-operatively, he had diabetes insipidus, hypogonadotropic hypogonadism and adrenocorticotropic hormone and thyroid-stimulating hormone deficiency. Despite the hypopituitarism, his IGF-1 levels remained elevated and subsequent oral glucose tolerance test did not show complete growth hormone (GH) suppression. Further review of the pre-operative imaging revealed a 12 × 4 mm pituitary adenoma close to the right carotid artery and no signs of pituitary hyperplasia. At that time, he was also diagnosed with squamous cell carcinoma of the left upper lung lobe finally managed with radical radiotherapy. Treatment with long-acting somatostatin analogue was initiated leading to biochemical control of the acromegaly. Latest imaging has shown no evidence of craniopharyngioma regrowth and stable adenoma. This is a unique case report of co-existence of craniopharyngioma, acromegaly and squamous lung cell carcinoma that highlights diagnostic and management challenges. Potential effects of the GH hypersecretion on the co-existent tumours of this patient are also briefly discussed.
Learning points:
-
Although an extremely rare clinical scenario, craniopharyngioma and acromegaly can co-exist; aetiopathogenic link between these two conditions is unlikely.
-
Meticulous review of unexpected biochemical findings is vital for correct diagnosis of dual pituitary pathology.
-
The potential adverse impact of GH excess due to acromegaly in a patient with craniopharyngioma (and other neoplasm) mandates adequate biochemical control of the GH hypersecretion.
Search for other papers by Tessa Glyn in
Google Scholar
PubMed
Search for other papers by Beverley Harris in
Google Scholar
PubMed
Search for other papers by Kate Allen in
Google Scholar
PubMed
Summary
We present the case of a 57-year-old lady who had a delayed diagnosis of central hypothyroidism on a background of Grave’s thyrotoxicosis and a partial thyroidectomy. During the twenty years following her partial thyroidectomy, the patient developed a constellation of symptoms and new diagnoses, which were investigated by numerous specialists from various fields, namely rheumatology, renal and respiratory. She developed significantly impaired renal function and raised creatine kinase (CK). She was also referred to a tertiary neurology service for investigation of myositis, which resulted in inconclusive muscle biopsies. Recurrently normal TSH results reassured clinicians that this did not relate to previous thyroid dysfunction. In 2015, she developed increased shortness of breath and was found to have a significant pericardial effusion. The clinical biochemist reviewed this lady’s blood results and elected to add on a free T4 (fT4) and free T3 (fT3), which were found to be <0.4 pmol/L (normal range (NR): 12–22 pmol/L) and 0.3 pmol/L (NR: 3.1–6.8 pmol/L), respectively. She was referred urgently to the endocrine services and commenced on Levothyroxine replacement for profound central hypothyroidism. Her other pituitary hormones and MRI were normal. In the following year, her eGFR and CK normalised, and her myositis symptoms, breathlessness and pericardial effusion resolved. One year following initiation of Levothyroxine, her fT4 and fT3 were in the normal range for the first time. This case highlights the pitfalls of relying purely on TSH for excluding hypothyroidism and the devastating effect the delay in diagnosis had upon this patient.
Learning points:
-
Isolated central hypothyroidism is very rare, but should be considered irrespective of previous thyroid disorders.
-
If clinicians have a strong suspicion that a patient may have hypothyroidism despite normal TSH, they should ensure they measure fT3 and fT4.
-
Laboratories that do not perform fT3 and fT4 routinely should review advice sent to requesting clinicians to include a statement explaining that a normal TSH excludes primary but not secondary hypothyroidism.
-
Thyroid function tests should be performed routinely in patients presenting with renal impairment or a raised CK.