Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 2 of 2 items for :

  • Hyperglycaemia x
Clear All
Ploutarchos Tzoulis Department of Diabetes, The Whittington Hospital, Whittington Health NHS Trust, London, UK

Search for other papers by Ploutarchos Tzoulis in
Google Scholar
PubMed
Close
,
Richard W Corbett Department of Medicine, Imperial College London, London, UK

Search for other papers by Richard W Corbett in
Google Scholar
PubMed
Close
,
Swarupini Ponnampalam Department of Diabetes, The Whittington Hospital, Whittington Health NHS Trust, London, UK

Search for other papers by Swarupini Ponnampalam in
Google Scholar
PubMed
Close
,
Elly Baker Department of Diabetes, The Whittington Hospital, Whittington Health NHS Trust, London, UK

Search for other papers by Elly Baker in
Google Scholar
PubMed
Close
,
Daniel Heaton Department of Diabetes, The Whittington Hospital, Whittington Health NHS Trust, London, UK

Search for other papers by Daniel Heaton in
Google Scholar
PubMed
Close
,
Triada Doulgeraki Medical School, University of Athens, Athens, Greece

Search for other papers by Triada Doulgeraki in
Google Scholar
PubMed
Close
, and
Justin Stebbing Department of Surgery and Cancer, Imperial College London, London, UK

Search for other papers by Justin Stebbing in
Google Scholar
PubMed
Close

Summary

Five days following the 3rd cycle of nivolumab, a monoclonal antibody, which acts as immune checkpoint inhibitor against the programmed cell death protein-1, for metastatic lung adenocarcinoma, a 56-year-old woman presented at the hospital critically ill. On admission, she had severe diabetic ketoacidosis (DKA), as evidenced by venous glucose of 47 mmol/L, blood ketones of 7.5 mmol/L, pH of 6.95 and bicarbonate of 6.6 mmol/L. She has had no personal or family history of diabetes mellitus (DM), while random venous glucose, measured 1 week prior to hospitalisation, was 6.1 mmol/L. On admission, her HbA1c was 8.2% and anti-GAD antibodies were 12 kIU/L (0–5 kU/L), while islet cell antibodies and serum C-peptide were undetectable. Nivolumab was recommenced without the development of other immune-mediated phenomena until 6 months later, when she developed hypothyroidism with TSH 18 U/L and low free T4. She remains insulin dependent and has required levothyroxine replacement, while she has maintained good radiological and clinical response to immunotherapy. This case is notable for the rapidity of onset and profound nature of DKA at presentation, which occurred two months following commencement of immunotherapy. Despite the association of nivolumab with immune-mediated endocrinopathies, only a very small number of patients developing type 1 DM has been reported to date. Patients should be closely monitored for hyperglycaemia and thyroid dysfunction prior to and periodically during immunotherapy.

Learning points:

  • Nivolumab can induce fulminant type 1 diabetes, resulting in DKA.

  • Nivolumab is frequently associated with thyroid dysfunction, mostly hypothyroidism.

  • Nivolumab-treated patients should be monitored regularly for hyperglycaemia and thyroid dysfunction.

  • Clinicians should be aware and warn patients of potential signs and symptoms of severe hyperglycaemia.

Open access
Joseph Cerasuolo Department of Neurology and Department of Internal Medicine, St. Vincent Hospital, Worcester, Massachusetts, USA

Search for other papers by Joseph Cerasuolo in
Google Scholar
PubMed
Close
and
Anthony Izzo Department of Neurology and Department of Internal Medicine, St. Vincent Hospital, Worcester, Massachusetts, USA

Search for other papers by Anthony Izzo in
Google Scholar
PubMed
Close

Summary

Acute hyperglycemia has been shown to cause cognitive impairments in animal models. There is growing appreciation of the numerous effects of hyperglycemia on neuronal function as well as blood–brain barrier function. In humans, hypoglycemia is well known to cause cognitive deficits acutely, but hyperglycemia has been less well studied. We present a case of selective neurocognitive deficits in the setting of acute hyperglycemia. A 60-year-old man was admitted to the hospital for an episode of acute hyperglycemia in the setting of newly diagnosed diabetes mellitus precipitated by steroid use. He was managed with insulin therapy and discharged home, and later, presented with complaints of memory impairment. Deficits included impairment in his declarative and working memory, to the point of significant impairment in his overall functioning. The patient had no structural lesions on MRI imaging of the brain or other systemic illnesses to explain his specific deficits. We suggest that his acute hyperglycemia may have caused neurological injury, and may be responsible for our patient’s memory complaints.

Learning points:

  • Acute hyperglycemia has been associated with poor outcomes in several different central nervous system injuries including cerebrovascular accident and hypoxic injury.

  • Hyperglycemia is responsible for accumulation of reactive oxygen species in the brain, resulting in advanced glycosylated end products and a proinflammatory response that may lead to cellular injury.

  • Further research is needed to define the impact of both acute and chronic hyperglycemia on cognitive impairment and memory.

Open access