Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 3 of 3 items for :

  • Constipation x
  • Renal insufficiency x
Clear All
Mawson Wang Nepean Blue Mountains Local Health District, Katoomba, New South Wales, Australia

Search for other papers by Mawson Wang in
Google Scholar
PubMed
Close
,
Catherine Cho Nepean Blue Mountains Local Health District, Katoomba, New South Wales, Australia

Search for other papers by Catherine Cho in
Google Scholar
PubMed
Close
,
Callum Gray Nepean Blue Mountains Local Health District, Katoomba, New South Wales, Australia

Search for other papers by Callum Gray in
Google Scholar
PubMed
Close
,
Thora Y Chai Department of Endocrinology, Nepean Blue Mountains Local Health District, Kingswood, New South Wales, Australia
Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia

Search for other papers by Thora Y Chai in
Google Scholar
PubMed
Close
,
Ruhaida Daud Nepean Blue Mountains Local Health District, Katoomba, New South Wales, Australia

Search for other papers by Ruhaida Daud in
Google Scholar
PubMed
Close
, and
Matthew Luttrell Department of Endocrinology, Nepean Blue Mountains Local Health District, Kingswood, New South Wales, Australia

Search for other papers by Matthew Luttrell in
Google Scholar
PubMed
Close

Summary

We report the case of a 65-year-old female who presented with symptomatic hypercalcaemia (corrected calcium of 4.57 mmol/L) with confusion, myalgias and abdominal discomfort. She had a concomitant metabolic alkalosis (pH 7.46, HCO3 - 40 mmol/L, pCO2 54.6 mmHg). A history of significant Quick-Eze use (a calcium carbonate based antacid) for abdominal discomfort, for 2 weeks prior to presentation, suggested a diagnosis of milk-alkali syndrome (MAS). Further investigations did not demonstrate malignancy or primary hyperparathyroidism. Following management with i.v. fluid rehydration and a single dose of i.v. bisphosphonate, she developed symptomatic hypocalcaemia requiring oral and parenteral calcium replacement. She was discharged from the hospital with stable biochemistry on follow-up. This case demonstrates the importance of a detailed history in the diagnosis of severe hypercalcaemia, with MAS representing the third most common cause of hypercalcaemia. We discuss its pathophysiology and clinical importance, which can often present with severe hypercalcaemia that can respond precipitously to calcium-lowering therapy.

Learning points:

  • Milk-alkali syndrome is an often unrecognised cause for hypercalcaemia, but is the third most common cause of admission for hypercalcaemia.

  • Calcium ingestion leading to MAS can occur at intakes as low as 1.0–1.5 g per day in those with risk factors.

  • Early recognition of this syndrome can avoid the use of calcium-lowering therapy such as bisphosphonates which can precipitate hypocalcaemia.

Open access
Ricardo A Macau Nephrology Department, Hospital Garcia de Orta

Search for other papers by Ricardo A Macau in
Google Scholar
PubMed
Close
,
Tiago Nunes da Silva Endocrinology Department, Hospital Garcia de Orta, Almada, Portugal

Search for other papers by Tiago Nunes da Silva in
Google Scholar
PubMed
Close
,
Joana Rego Silva Nephrology Department, Hospital Garcia de Orta

Search for other papers by Joana Rego Silva in
Google Scholar
PubMed
Close
,
Ana Gonçalves Ferreira Endocrinology Department, Hospital Garcia de Orta, Almada, Portugal

Search for other papers by Ana Gonçalves Ferreira in
Google Scholar
PubMed
Close
, and
Pedro Bravo Nephrology Department, Hospital Garcia de Orta

Search for other papers by Pedro Bravo in
Google Scholar
PubMed
Close

Summary

Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series). We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to a bowel obstruction and developed severe dehydration after surgery when she was water deprived. After desmopressin administration and unsuccessful thiazide and amiloride treatment, acetazolamide was administrated to control polyuria and hydroelectrolytic disorders without significant side effects. To our knowledge, this is the third publication on acetazolamide use in Li-NDI patients.

Learning points:

  • Treatment of lithium-induced nephrogenic diabetes insipidus might be challenging.

  • Vasopressin, amiloride and thiazide diuretics have been used in lithium-induced nephrogenic diabetes insipidus treatment.

  • Acetazolamide might be an option to treat lithium-induced nephrogenic diabetes insipidus patients who fail to respond to standard treatment.

  • The use of acetazolamide in lithium-induced nephrogenic diabetes insipidus must be monitored, including its effects on glomerular filtration rate.

Open access
Tessa Glyn Diabetes and Endocrinology

Search for other papers by Tessa Glyn in
Google Scholar
PubMed
Close
,
Beverley Harris Clinical Biochemist, Royal United Hospital, Bath, UK

Search for other papers by Beverley Harris in
Google Scholar
PubMed
Close
, and
Kate Allen Diabetes and Endocrinology

Search for other papers by Kate Allen in
Google Scholar
PubMed
Close

Summary

We present the case of a 57-year-old lady who had a delayed diagnosis of central hypothyroidism on a background of Grave’s thyrotoxicosis and a partial thyroidectomy. During the twenty years following her partial thyroidectomy, the patient developed a constellation of symptoms and new diagnoses, which were investigated by numerous specialists from various fields, namely rheumatology, renal and respiratory. She developed significantly impaired renal function and raised creatine kinase (CK). She was also referred to a tertiary neurology service for investigation of myositis, which resulted in inconclusive muscle biopsies. Recurrently normal TSH results reassured clinicians that this did not relate to previous thyroid dysfunction. In 2015, she developed increased shortness of breath and was found to have a significant pericardial effusion. The clinical biochemist reviewed this lady’s blood results and elected to add on a free T4 (fT4) and free T3 (fT3), which were found to be <0.4 pmol/L (normal range (NR): 12–22 pmol/L) and 0.3 pmol/L (NR: 3.1–6.8 pmol/L), respectively. She was referred urgently to the endocrine services and commenced on Levothyroxine replacement for profound central hypothyroidism. Her other pituitary hormones and MRI were normal. In the following year, her eGFR and CK normalised, and her myositis symptoms, breathlessness and pericardial effusion resolved. One year following initiation of Levothyroxine, her fT4 and fT3 were in the normal range for the first time. This case highlights the pitfalls of relying purely on TSH for excluding hypothyroidism and the devastating effect the delay in diagnosis had upon this patient.

Learning points:

  • Isolated central hypothyroidism is very rare, but should be considered irrespective of previous thyroid disorders.

  • If clinicians have a strong suspicion that a patient may have hypothyroidism despite normal TSH, they should ensure they measure fT3 and fT4.

  • Laboratories that do not perform fT3 and fT4 routinely should review advice sent to requesting clinicians to include a statement explaining that a normal TSH excludes primary but not secondary hypothyroidism.

  • Thyroid function tests should be performed routinely in patients presenting with renal impairment or a raised CK.

Open access