Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 5 of 5 items for :

  • Face - coarse features x
Clear All
Syed Ali Imran Division of Endocrinology and Metabolism, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Syed Ali Imran in
Google Scholar
PubMed
Close
,
Khaled A Aldahmani Division of Endocrinology, Tawam Hospial, Al-Ain, UAE

Search for other papers by Khaled A Aldahmani in
Google Scholar
PubMed
Close
,
Lynette Penney Department of Pediatrics, Tawam Hospial, Al-Ain, UAE

Search for other papers by Lynette Penney in
Google Scholar
PubMed
Close
,
Sidney E Croul Department of Pathology, Tawam Hospial, Al-Ain, UAE

Search for other papers by Sidney E Croul in
Google Scholar
PubMed
Close
,
David B Clarke Department of Neurosurgery, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by David B Clarke in
Google Scholar
PubMed
Close
,
David M Collier Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by David M Collier in
Google Scholar
PubMed
Close
,
Donato Iacovazzo Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Donato Iacovazzo in
Google Scholar
PubMed
Close
, and
Márta Korbonits Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK

Search for other papers by Márta Korbonits in
Google Scholar
PubMed
Close

Summary

Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy.

Learning points:

  • Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.

  • Unusual, previously not described AIP variant with loss of the stop codon.

  • Phenocopy may occur in families with a disease-causing germline mutation.

Open access
Alfredo Di Cerbo Endocrinology, ‘Casa Sollievo della Sofferenza’, IRCCS, San Giovanni Rotondo, Foggia, Italy

Search for other papers by Alfredo Di Cerbo in
Google Scholar
PubMed
Close
,
Federica Pezzuto Department of Medical, Oral and Biotechnological Sciences, Dental School, University ‘G. d’Annunzio’ of Chieti-Pescara, Chieti, Italy

Search for other papers by Federica Pezzuto in
Google Scholar
PubMed
Close
, and
Alessandro Di Cerbo Department of Medical, Oral and Biotechnological Sciences, Dental School, University ‘G. d’Annunzio’ of Chieti-Pescara, Chieti, Italy

Search for other papers by Alessandro Di Cerbo in
Google Scholar
PubMed
Close

Summary

Graves’ disease, the most common form of hyperthyroidism in iodine-replete countries, is associated with the presence of immunoglobulins G (IgGs) that are responsible for thyroid growth and hyperfunction. In this article, we report the unusual case of a patient with acromegaly and a severe form of Graves’ disease. Here, we address the issue concerning the role of growth hormone (GH) and insulin-like growth factor 1 (IGF1) in influencing thyroid function. Severity of Graves’ disease is exacerbated by coexistent acromegaly and both activity indexes and symptoms and signs of Graves’ disease improve after the surgical remission of acromegaly. We also discuss by which signaling pathways GH and IGF1 may play an integrating role in regulating the function of the immune system in Graves’ disease and synergize the stimulatory activity of Graves’ IgGs.

Learning points:

  • Clinical observations have demonstrated an increased prevalence of euthyroid and hyperthyroid goiters in patients with acromegaly.

  • The coexistence of acromegaly and Graves’ disease is a very unusual event, the prevalence being <1%.

  • Previous in vitro studies have showed that IGF1 synergizes the TSH-induced thyroid cell growth-activating pathways independent of TSH/cAMP/PKA cascade.

  • We report the first case of a severe form of Graves’ disease associated with acromegaly and show that surgical remission of acromegaly leads to a better control of symptoms of Graves’ disease.

Open access
Noor Rafhati Adyani Abdullah Endocrinology Unit, Department of Medicine, Putrajaya Hospital, Putrajaya, Malaysia

Search for other papers by Noor Rafhati Adyani Abdullah in
Google Scholar
PubMed
Close
,
Wong Lok Chin Jason Department of Medicine, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia

Search for other papers by Wong Lok Chin Jason in
Google Scholar
PubMed
Close
, and
Azraai Bahari Nasruddin Endocrinology Unit, Department of Medicine, Putrajaya Hospital, Putrajaya, Malaysia

Search for other papers by Azraai Bahari Nasruddin in
Google Scholar
PubMed
Close

Summary

Pachydermoperiostosis is a very rare osteoarthrodermopathic disorder whose clinical and radiographic presentations may mimic those of acromegaly. In the evaluation of patients with acromegaloid appearances, pachydermoperiostosis should be considered as a differential diagnosis. In this article, we report a 17-year-old boy who presented with 2-year history of acral enlargement and facial appearance changes associated with joint pain and excessive sweating. He had been investigated extensively for acromegaly, and the final diagnosis was pachydermoperiostosis.

Learning points

  • There is a broad range of differential diagnosis for acromegaloid features such as acromegaly, pseudoacromegaly with severe insulin resistance, Marfan’s syndrome, McCune–Albright and a rare condition called pachydermoperiostosis.

  • Once a patient is suspected to have acromegaly, the first step is biochemical testing to confirm the clinical diagnosis, followed by radiologic testing to determine the cause of the excess growth hormone (GH) secretion. The cause is a somatotroph adenoma of the pituitary in over 95 percent of cases.

  • The first step is measurement of a serum insulin-like growth factor 1 (IGF1). A normal serum IGF1 concentration is strong evidence that the patient does not have acromegaly.

  • If the serum IGF1 concentration is high (or equivocal), serum GH should be measured after oral glucose administration. Inadequate suppression of GH after a glucose load confirms the diagnosis of acromegaly.

  • Once the presence of excess GH secretion is confirmed, the next step is pituitary magnetic resonance imaging (MRI).

  • Atypical presentation warrants revision of the diagnosis. This patient presented with clubbing with no gigantism, which is expected in adolescent acromegalics as the growth spurt and epiphyseal plate closure have not taken place yet.

Open access
Ruth Mangupli Department of Neurosurgery, Section of Neuroendocrinology, Hospital Universitario de Caracas, Caracas, Venezuela

Search for other papers by Ruth Mangupli in
Google Scholar
PubMed
Close
,
Adrian F Daly Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium

Search for other papers by Adrian F Daly in
Google Scholar
PubMed
Close
,
Elvia Cuauro Department of Neurosurgery, Section of Neuroendocrinology, Hospital Universitario de Caracas, Caracas, Venezuela

Search for other papers by Elvia Cuauro in
Google Scholar
PubMed
Close
,
Paul Camperos Department of Neurosurgery, Section of Neuroendocrinology, Hospital Universitario de Caracas, Caracas, Venezuela

Search for other papers by Paul Camperos in
Google Scholar
PubMed
Close
,
Jaime Krivoy Department of Neurosurgery, Section of Neuroendocrinology, Hospital Universitario de Caracas, Caracas, Venezuela

Search for other papers by Jaime Krivoy in
Google Scholar
PubMed
Close
, and
Albert Beckers Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium

Search for other papers by Albert Beckers in
Google Scholar
PubMed
Close

Summary

A 20-year-old man with an 8-year history of progressive enlargement of his hands and feet, coarsening facial features, painful joints and thickened, oily skin was referred for investigation of acromegaly. On examination, the subject was of normal height and weight. He had markedly increased skin thickness around the forehead, eyelids and scalp with redundant skin folds. Bilateral painful knee swelling was accompanied by enlargement of the extremities, and his fingers were markedly clubbed. Routine hematological, biochemical and hormonal blood tests, including GH and IGF-1 were normal. The clinical picture suggested primary hypertrophic osteoarthropathy (PHOA) rather than acromegaly and radiological studies were supportive of this, demonstrating increased subperiosteal bone formation and increased bone density and cortical thickening. There was widespread joint disease, with narrowing of joint spaces, whereas the knees demonstrated effusions and calcification. A skull X-ray revealed calvarial hyperostosis and a normal sellar outline. Family history was negative. Genetic studies were performed on peripheral blood leukocyte DNA for mutations in the two genes associated with PHOA, 15-hydroxyprostaglandin dehydrogenase (HPGD; OMIM: 601688) and solute carrier organic anion transporter family member 2A1 (SLCO2A1; OMIM: 601460). The sequence of HPGD was normal, whereas the subject was homozygous for a novel pathological variant in SLCO2A1, c.830delT, that predicted a frameshift and early protein truncation (p.Phe277Serfs*8). PHOA, also known as pachydermoperiostosis, is a rare entity caused by abnormal prostaglandin E2 metabolism, and both HPGD and SLCO2A1 are necessary for normal prostaglandin E2 handling. High prostaglandin levels lead to bone formation and resorption and connective tissue inflammation causing arthropathy, in addition to soft tissue swelling.

Learning points:

  • The differential diagnosis of enlarged extremities, coarsened facial features, skin changes and increased sweating in suspected acromegaly is quite limited and primary hypertrophic osteoarthropathy (PHOA) is one of the few conditions that can mimic acromegaly at presentation.

  • PHOA is not associated with abnormalities in GH and IGF-1 secretion and can be readily differentiated from acromegaly by hormonal testing.

  • Clubbing in the setting of diffuse enlargement of joints and extremities in addition to skin changes should alert the physician to the possibility of PHOA, as clubbing is not a usual feature of acromegaly. Underlying causes of secondary hypertrophic osteoarthroapthy (e.g. bronchial neoplasia) should be considered.

  • PHOA is a very rare condition caused by abnormalities in prostaglandin metabolism and has two known genetic causes (HPGD and SLCO2A1 mutations).

  • SLCO2A1 gene mutations lead usually to autosomal recessive PHOA; fewer than 50 SLCO2A1 mutations have been described to date and the current case is only the second in a Hispanic patient.

  • Treatment of primary hypertrophic osteoarthropathy is focused on the management of joint pain usually in the form of non-steroidal anti-inflammatory drug therapy.

Open access
Ekaterina Manuylova Department of Endocrinology, Diabetes and Metabolism

Search for other papers by Ekaterina Manuylova in
Google Scholar
PubMed
Close
,
Laura M Calvi Department of Endocrinology, Diabetes and Metabolism

Search for other papers by Laura M Calvi in
Google Scholar
PubMed
Close
,
Catherine Hastings Department of Neurosurgery

Search for other papers by Catherine Hastings in
Google Scholar
PubMed
Close
,
G Edward Vates Department of Neurosurgery

Search for other papers by G Edward Vates in
Google Scholar
PubMed
Close
,
Mahlon D Johnson Department of Pathology, University of Rochester, Rochester, New York, USA

Search for other papers by Mahlon D Johnson in
Google Scholar
PubMed
Close
,
William T Cave Jr Department of Endocrinology, Diabetes and Metabolism

Search for other papers by William T Cave Jr in
Google Scholar
PubMed
Close
, and
Ismat Shafiq Department of Endocrinology, Diabetes and Metabolism

Search for other papers by Ismat Shafiq in
Google Scholar
PubMed
Close

Summary

Co-secretion of growth hormone (GH) and prolactin (PRL) from a single pituitary adenoma is common. In fact, up to 25% of patients with acromegaly may have PRL co-secretion. The prevalence of acromegaly among patients with a newly diagnosed prolactinoma is unknown. Given the possibility of mixed GH and PRL co-secretion, the current recommendation is to obtain an insulin-like growth factor-1 (IGF-1) in patients with prolactinoma at the initial diagnosis. Long-term follow-up of IGF-1 is not routinely done. Here, we report two cases of well-controlled prolactinoma on dopamine agonists with the development of acromegaly 10–20 years after the initial diagnoses. In both patients, a mixed PRL/GH-cosecreting adenoma was confirmed on the pathology examination after transsphenoidal surgery (TSS). Therefore, periodic routine measurements of IGF-1 should be considered regardless of the duration and biochemical control of prolactinoma.

Learning points:

  • Acromegaly can develop in patients with well-controlled prolactinoma on dopamine agonists.

  • The interval between prolactinoma and acromegaly diagnoses can be several decades.

  • Periodic screening of patients with prolactinoma for growth hormone excess should be considered and can 
lead to an early diagnosis of acromegaly before the development of complications.

Open access