Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 3 of 3 items for :

  • Hyperinsulinaemia x
  • Hyperglycaemia x
Clear All
Masato Kotani Center for Diabetes, Endocrinology and Metabolism
Research Support Center, Shizuoka General Hospital, Shizuoka, Shizuoka, Japan
Asahina Shinryoujo, Fujieda, Shizuoka, Japan

Search for other papers by Masato Kotani in
Google Scholar
PubMed
Close
,
Naohisa Tamura Center for Diabetes, Endocrinology and Metabolism
Research Support Center, Shizuoka General Hospital, Shizuoka, Shizuoka, Japan

Search for other papers by Naohisa Tamura in
Google Scholar
PubMed
Close
,
Tatsuhide Inoue Center for Diabetes, Endocrinology and Metabolism

Search for other papers by Tatsuhide Inoue in
Google Scholar
PubMed
Close
, and
Issei Tanaka Center for Diabetes, Endocrinology and Metabolism

Search for other papers by Issei Tanaka in
Google Scholar
PubMed
Close

Summary

Type B insulin resistance syndrome is characterized by the presence of autoantibodies to the insulin receptor. We present a 57-year-old male admitted to a hospital due to body weight loss of 16 kg and hyperglycemia of 13.6 mmol/L. He was diagnosed with type B insulin resistance syndrome because the anti-insulin receptor antibodies were positive. We informed him that some hyperglycemic cases of this syndrome had been reported to be spontaneously remitted in 5 years, and he did not agree to be treated with high-dose glucocorticoids and/or immunosuppressive agents due to his concern for their adverse effects such as hyperglycemia and immunosuppression. He chose to be treated with insulin and voglibose, but fair glucose control could not be obtained. Six years later, he agreed to be treated with low-dose glucocorticoids practicable in outpatient settings. One milligram per day of betamethasone was tried orally and reduced gradually according to the values of glycated hemoglobin. After 30 months of glucocorticoid treatment, the anti-insulin receptor antibodies became undetectable and his fasting plasma glucose and glycated hemoglobin were normalized. This case suggests that low-dose glucocorticoids could be a choice to treat type B insulin resistance syndrome in outpatient settings.

Learning points:

  • Type B insulin resistance syndrome is an acquired autoimmune disease for insulin receptors.

  • This case suggested the possibility of long-lasting, low-dose glucocorticoid therapy for the syndrome as an alternative for high-dose glucocorticoids or immunosuppressive agents.

  • Since the prevalence of autoimmune nephritis is high in the syndrome, a delay of immunosuppressive therapy initiation might result in an exacerbation of nephropathy.

Open access
Ved Bhushan Arya Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ved Bhushan Arya in
Google Scholar
PubMed
Close
,
Jennifer Kalitsi Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Jennifer Kalitsi in
Google Scholar
PubMed
Close
,
Ann Hickey Department of Neonatology, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ann Hickey in
Google Scholar
PubMed
Close
,
Sarah E Flanagan Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK

Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Close
, and
Ritika R Kapoor Department of Paediatric Endocrinology, Variety Club Children’s Hospital, King’s College Hospital NHS Foundation Trust, London, UK

Search for other papers by Ritika R Kapoor in
Google Scholar
PubMed
Close

Summary

Diazoxide is the first-line treatment for patients with hyperinsulinaemic hypoglycaemia (HH). Approximately 50% of patients with HH are diazoxide resistant. However, marked diazoxide sensitivity resulting in severe hyperglycaemia is extremely uncommon and not reported previously in the context of HH due to HNF4A mutation. We report a novel observation of exceptional diazoxide sensitivity in a patient with HH due to HNF4A mutation. A female infant presented with severe persistent neonatal hypoglycaemia and was diagnosed with HH. Standard doses of diazoxide (5 mg/kg/day) resulted in marked hyperglycaemia (maximum blood glucose 21.6 mmol/L) necessitating discontinuation of diazoxide. Lower dose of diazoxide (1.5 mg/kg/day) successfully controlled HH in the proband, which was subsequently confirmed to be due to a novel HNF4A mutation. At 3 years of age, the patient maintains age appropriate fasting tolerance on low dose diazoxide (1.8 mg/kg/day) and has normal development. Diagnosis in proband’s mother and maternal aunt, both of whom carried HNF4A mutation and had been diagnosed with presumed type 1 and type 2 diabetes mellitus, respectively, was revised to maturity-onset diabetes of young (MODY). Proband’s 5-year-old maternal cousin, also carrier of HNF4A mutation, had transient neonatal hypoglycaemia. To conclude, patients with HH due to HNF4A mutation may require lower diazoxide than other group of patients with HH. Educating the families about the risk of marked hyperglycaemia with diazoxide is essential. The clinical phenotype of HNF4A mutation can be extremely variable.

Learning points:

  • Awareness of risk of severe hyperglycaemia with diazoxide is important and patients/families should be accordingly educated.

  • Some patients with HH due to HNF4A mutations may require lower than standard doses of diazoxide.

  • The clinical phenotype of HNF4A mutation can be extremely variable.

Open access
Benjamin G Challis Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Benjamin G Challis in
Google Scholar
PubMed
Close
,
Nicolai J Wewer Albrechtsen Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Nicolai J Wewer Albrechtsen in
Google Scholar
PubMed
Close
,
Vishakha Bansiya Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Vishakha Bansiya in
Google Scholar
PubMed
Close
,
Keith Burling Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Keith Burling in
Google Scholar
PubMed
Close
,
Peter Barker Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Peter Barker in
Google Scholar
PubMed
Close
,
Bolette Hartmann Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Bolette Hartmann in
Google Scholar
PubMed
Close
,
Fiona Gribble Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Fiona Gribble in
Google Scholar
PubMed
Close
,
Stephen O'Rahilly Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Stephen O'Rahilly in
Google Scholar
PubMed
Close
,
Jens J Holst Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Jens J Holst in
Google Scholar
PubMed
Close
, and
Helen L Simpson Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Helen L Simpson in
Google Scholar
PubMed
Close

Summary

Pancreatic neuroendocrine tumours (pNETs) secreting proglucagon are associated with phenotypic heterogeneity. Here, we describe two patients with pNETs and varied clinical phenotypes due to differential processing and secretion of proglucagon-derived peptides (PGDPs). Case 1, a 57-year-old woman presented with necrolytic migratory erythema, anorexia, constipation and hyperinsulinaemic hypoglycaemia. She was found to have a grade 1 pNET, small bowel mucosal thickening and hyperglucagonaemia. Somatostatin analogue (SSA) therapy improved appetite, abolished hypoglycaemia and improved the rash. Case 2, a 48-year-old male presented with diabetes mellitus, diarrhoea, weight loss, nausea, vomiting and perineal rash due to a grade 1 metastatic pNET and hyperglucagonaemia. In both cases, plasma levels of all measured PGDPs were elevated and attenuated following SSA therapy. In case 1, there was increased production of intact glucagon-like peptide 1 (GLP-1) and GLP-2, similar to that of the enteroendocrine L cell. In case 2, pancreatic glucagon was elevated due to a pancreatic α-cell-like proglucagon processing profile. In summary, we describe two patients with pNETs and heterogeneous clinical phenotypes due to differential processing and secretion of PGDPs. This is the first description of a patient with symptomatic hyperinsulinaemic hypoglycaemia and marked gastrointestinal dysfunction due to, in part, a proglucagon-expressing pNET.

Learning points

  • PGDPs exhibit a diverse range of biological activities including critical roles in glucose and amino acid metabolism, energy homeostasis and gastrointestinal physiology.

  • The clinical manifestations of proglucagon-expressing tumours may exhibit marked phenotypic variation due to the biochemical heterogeneity of their secreted peptide repertoire.

  • Specific and precise biochemical assessment of individuals with proglucagon-expressing tumours may provide opportunities for improved diagnosis and clinical management.

Open access