Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Rowena Speak in
Google Scholar
PubMed
Search for other papers by Jackie Cook in
Google Scholar
PubMed
Search for other papers by Barney Harrison in
Google Scholar
PubMed
Endocrinology
Search for other papers by John Newell-Price in
Google Scholar
PubMed
Mutations of the rearranged during transfection (RET) proto-oncogene, located on chromosome 10q11.2, cause multiple endocrine neoplasia type 2A (MEN2A). Patients with mutations at the codon 609 usually exhibit a high penetrance of medullary thyroid cancer (MTC), but a sufficiently low penetrance of phaeochromocytoma that screening for this latter complication has been called to question. Patients with other RET mutations are at higher risk of younger age onset phaeochromocytoma if they also possess other RET polymorphisms (L769L, S836S, G691S and S904S), but there are no similar data for patients with 609 mutations. We investigated the unusual phenotypic presentation in a family with MEN2A due to a C609Y mutation in RET. Sanger sequencing of the entire RET-coding region and exon–intron boundaries was performed. Five family members were C609Y mutation positive: 3/5 initially presented with phaeochromocytoma, but only 1/5 had MTC. The index case aged 73 years had no evidence of MTC, but presented with phaeochromocytoma. Family members also possessed the G691S and S904S RET polymorphisms. We illustrate a high penetrance of phaeochromocytoma and low penetrance of MTC in patients with a RET C609Y mutation and polymorphisms G691S and S904S. These data highlight the need for life-long screening for the complications of MEN2A in these patients and support the role for the screening of RET polymorphisms for the purposes of risk stratification.
Learning points:
-
C609Y RET mutations may be associated with a life-long risk of phaeochromocytoma indicating the importance of life-long screening for this condition in patients with MEN2A.
-
C609Y RET mutations may be associated with a lower risk of MTC than often quoted, questioning the need for early prophylactic thyroid surgery discussion at the age of 5 years.
-
There may be a role for the routine screening of RET polymorphisms, and this is greatly facilitated by the increasing ease of access to next-generation sequencing.
Search for other papers by Etienne Larger in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Nicolai J Wewer Albrechtsen in
Google Scholar
PubMed
Search for other papers by Lars H Hansen in
Google Scholar
PubMed
Search for other papers by Richard W Gelling in
Google Scholar
PubMed
Sorbonne University, UPMC, University of Paris 6, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
Search for other papers by Jacqueline Capeau in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Carolyn F Deacon in
Google Scholar
PubMed
Search for other papers by Ole D Madsen in
Google Scholar
PubMed
Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, Japan
Search for other papers by Fumiatsu Yakushiji in
Google Scholar
PubMed
Search for other papers by Pierre De Meyts in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jens J Holst in
Google Scholar
PubMed
Search for other papers by Erica Nishimura in
Google Scholar
PubMed
Summary
Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 µM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.
Learning points:
-
Loss of function of the glucagon receptor may not necessarily lead to the dysregulation of glucose homeostasis.
-
Loss of function of the glucagon receptor causes hyperaminoacidemia, hyperglucagonemia and α-cell hyperplasia and sometimes other pancreatic abnormalities.
-
A hepato–pancreatic feedback regulation of the α-cells, possibly involving amino acids, may exist in humans.