Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Irene Berges-Raso in
Google Scholar
PubMed
Search for other papers by Olga Giménez-Palop in
Google Scholar
PubMed
Search for other papers by Elisabeth Gabau in
Google Scholar
PubMed
Search for other papers by Ismael Capel in
Google Scholar
PubMed
Search for other papers by Assumpta Caixàs in
Google Scholar
PubMed
Search for other papers by Mercedes Rigla in
Google Scholar
PubMed
Summary
Kallmann syndrome is a genetically heterogeneous form of hypogonadotropic hypogonadism caused by gonadotropin-releasing hormone deficiency and characterized by anosmia or hyposmia due to hypoplasia of the olfactory bulbs; osteoporosis and metabolic syndrome can develop due to longstanding untreated hypogonadism. Kallmann syndrome affects 1 in 10 000 men and 1 in 50 000 women. Defects in 17 genes, including KAL1, have been implicated. Kallmann syndrome can be associated with X-linked ichthyosis, a skin disorder characterized by early onset dark, dry, irregular scales affecting the limb and trunk, caused by a defect of the steroid sulfatase gene (STS). Both KAL1 and STS are located in the Xp22.3 region; therefore, deletions in this region cause a contiguous gene syndrome. We report the case of a 32-year-old man with ichthyosis referred for evaluation of excessive height (2.07 m) and weight (BMI: 29.6 kg/m2), microgenitalia and absence of secondary sex characteristics. We diagnosed Kallmann syndrome with ichthyosis due to a deletion in Xp22.3, a rare phenomenon.
Learning points:
-
Kallmann syndrome is a genetically heterogeneous disease characterized by hypogonadotropic hypogonadism with anosmia or hyposmia associated with defects in the production or action of gonadotropin-releasing hormone (GnRH) and hypoplasia of the olfactory bulbs.
-
Several genes have been implicated in Kallmann syndrome, including KAL1, located in the Xp22.3 region, which is responsible for X-linked Kallmann syndrome. KAL1 encodes the protein anosmin-1. X-linked ichthyosis is caused by deficiency of the steroid sulfatase enzyme, encoded by STS, which is also located in the Xp22.3 region. Deletions involving this region can affect both genes and result in contiguous gene syndromes.
-
Phenotype can guide clinicians toward suspicion of a specific genetic mutation. KAL1 mutations are mostly related to microgenitalia, unilateral renal agenesis and synkinesia, although patients need not present all these abnormalities.
-
Longstanding untreated hypogonadism is associated with poor sexual health, osteoporosis and metabolic syndrome with the concomitant risk of developing type 2 diabetes mellitus and obesity.
-
Treatment aims to promote the development of secondary sex characteristics, build and sustain normal bone and muscle mass and restore fertility. Treatment can also help minimize some psychological consequences.
-
Treatments available for patients with congenital GnRH deficiency such as Kallmann syndrome include gonadal steroid hormones, human gonadotropins and GnRH. The choice of therapy depends on the goal or goals.
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by B Cangiano in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by C Cacciatore in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by L Persani in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by M Bonomi in
Google Scholar
PubMed
We describe a case of severe erythrocytosis caused by testosterone replacement therapy in a 66-year-old man affected with hypogonadotropic hypogonadism (HH) determining osteoporosis, resolved by switching to restoration therapy with clomiphene citrate. The patient complained fatigue, loss of libido and defective erections and a spontaneous vertebral fracture despite bisphosphonate therapy and vitamin D supplementation. The examinations proved isolated HH and he was therefore treated with testosterone gel with regression of specific manifestations but elevated hemoglobin and hematocrit values. Therefore, it was decided to switch to a restoration therapy with clomiphene citrate 25 mg/die, which resulted in the resolution of symptoms without evident side effects. In a couple of months, the patient showed normalization of testosterone levels and increment of testicular volume. Since secondary hypogonadism is the consequence of an insufficient stimulation of the gonads by hypothalamic–pituitary axis, therapeutic approaches aimed to restore endogenous testosterone production should be considered in alternative to testosterone replacement, particularly if side effects intervene. Among these strategies, clomiphene citrate seems to have a high efficacy and safety profile also in the elderly with isolated HH and no evident pituitary lesion.
Learning points:
-
Hypogonadism should always be assessed in patients with severe loss in BMD and undergo appropriate medical treatment.
-
In hypogonadotropic hypogonadism, more approaches are available other than testosterone replacement therapy alone.
-
In patients with severe late-onset central hypogonadism presenting with erythrocytosis even at low doses of replacement therapy, restoration therapy with clomiphene could prove to be an effective solution, particularly in patients with a reversible disruption of GNRH/gonadotropin functions.
-
Clomiphene citrate increases gonadotropin levels and testicular volume and should therefore be considered in hypogonadal men who wish to remain fertile.
Search for other papers by Teresa Rego in
Google Scholar
PubMed
Search for other papers by Fernando Fonseca in
Google Scholar
PubMed
Search for other papers by Stéphanie Espiard in
Google Scholar
PubMed
Search for other papers by Karine Perlemoine in
Google Scholar
PubMed
Search for other papers by Jérôme Bertherat in
Google Scholar
PubMed
Search for other papers by Ana Agapito in
Google Scholar
PubMed
Summary
PBMAH is a rare etiology of Cushing syndrome (CS). Familial clustering suggested a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene. A 70-year-old female patient was admitted due to left femoral neck fracture in May 2014, in Orthopedics Department. During hospitalization, hypertension (HTA) and hypokalemia were diagnosed. She presented with clinical signs of hypercortisolism and was transferred to the Endocrinology ward for suspected CS. Laboratory workup revealed: ACTH <5 pg/mL; urinary free cortisol (UFC), 532 µg/24 h (normal range: 20–90); failure to suppress the low-dose dexamethasone test (0.5 mg every 6 h for 48 h): cortisol 21 µg/dL. Abdominal magnetic resonance imaging (MRI) showed enlarged nodular adrenals (right, 55 × 54 × 30 mm; left, 85 × 53 × 35 mm), and she was submitted to bilateral adrenalectomy. In 2006, this patient’s 39-year-old daughter had been treated by one of the authors. She presented with severe clinical and biological hypercortisolism. Computed tomography (CT) scan showed massively enlarged nodular adrenals with maximal axis of 15 cm for both. Bilateral adrenalectomy was performed. In this familial context of PBMAH, genetic study was performed. Leucocyte DNA genotyping identified in both patients the same germline heterozygous ARMC5 mutation in exon 1 c.172_173insA p.I58Nfs*45. The clinical cases herein described have an identical phenotype with severe hypercortisolism and huge adrenal glands, but different ages at the time of diagnosis. Current knowledge of inheritance of this disease, its insidious nature and the well-known deleterious effect of hypercortisolism favor genetic study to timely identify and treat these patients.
Learning points:
-
PBMAH is a rare etiology of CS, characterized by functioning adrenal macronodules and variable cortisol secretion.
-
The asymmetric/asynchronous involvement of only one adrenal gland can also occur, making disease diagnosis a challenge.
-
Familial clustering suggests a genetic cause that was recently confirmed, after identification of inactivating germline mutations in armadillo repeat-containing 5 (ARMC5) gene.
-
The insidious nature of this disease and the well-known deleterious effect of hypercortisolism favor genetic study of other family members, to diagnose and treat these patients timely.
-
As ARMC5 is expressed in many organs and recent findings suggest an association of PBMAH and meningioma, a watchful follow-up is required.