Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 2 of 2 items for :

  • Appetite reduction/loss x
  • Hyperglycaemia x
Clear All
Kazuhisa Kusuki Department of Diabetes and Endocrinology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-ku, Tokyo, Japan

Search for other papers by Kazuhisa Kusuki in
Google Scholar
PubMed
Close
,
Saya Suzuki Department of Diabetes and Endocrinology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-ku, Tokyo, Japan

Search for other papers by Saya Suzuki in
Google Scholar
PubMed
Close
, and
Yuzo Mizuno Department of Diabetes and Endocrinology, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-ku, Tokyo, Japan

Search for other papers by Yuzo Mizuno in
Google Scholar
PubMed
Close

Summary

A 72-year-old man with no history of diabetes was referred to our department due to hyperglycemia during pembrolizumab treatment for non-small-cell lung carcinoma. His blood glucose level was 209 mg/dL, but he was not in a state of ketosis or ketoacidosis. Serum C-peptide levels persisted at first, but gradually decreased, and 18 days later, he was admitted to our hospital with diabetic ketoacidosis (DKA). The patient was diagnosed with fulminant type 1 diabetes (FT1D) induced by pembrolizumab. According to the literature, the insulin secretion capacity of a patient with type 1 diabetes (T1D) induced by anti-programmed cell death-1 (anti-PD-1) antibody is depleted in approximately 2 to 3 weeks, which is longer than that of typical FT1D. Patients with hyperglycemia and C-peptide persistence should be considered for hospitalization or frequent outpatient visits with insulin treatment because these could indicate the onset of life-threatening FT1D induced by anti-PD-1 antibodies. Based on the clinical course of this patient and the literature, we suggest monitoring anti-PD-1 antibody-related T1D.

Learning points:

  • Immune checkpoint inhibitors, such as anti-PD-1 antibodies, are increasingly used as anticancer drugs. Anti-PD-1 antibodies can cause immune-related adverse events, including T1D.

  • FT1D, a novel subtype of T1D, is characterized by the abrupt onset of hyperglycemia with ketoacidosis, a relatively low glycated hemoglobin level and depletion of C-peptide level at onset.

  • In patients being treated with anti-PD-1 antibody, hyperglycemia with C-peptide level persistence should be monitored through regular blood tests. Because of C-peptide persistence and mild hyperglycemia, it is possible to miss a diagnosis of life-threatening FT1D induced by anti-PD-1 antibody.

  • In particular, in patients who have no history of diabetes, hyperglycemia without DKA is likely to be the very beginning of anti-PD-1 antibody-induced T1D. Therefore, such patients must be considered for either hospitalization or frequent outpatient visits with insulin injections and self-monitoring of blood glucose.

Open access
Benjamin G Challis Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Benjamin G Challis in
Google Scholar
PubMed
Close
,
Nicolai J Wewer Albrechtsen Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Nicolai J Wewer Albrechtsen in
Google Scholar
PubMed
Close
,
Vishakha Bansiya Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Vishakha Bansiya in
Google Scholar
PubMed
Close
,
Keith Burling Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Keith Burling in
Google Scholar
PubMed
Close
,
Peter Barker Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Peter Barker in
Google Scholar
PubMed
Close
,
Bolette Hartmann Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Bolette Hartmann in
Google Scholar
PubMed
Close
,
Fiona Gribble Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK

Search for other papers by Fiona Gribble in
Google Scholar
PubMed
Close
,
Stephen O'Rahilly Wellcome Trust–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Stephen O'Rahilly in
Google Scholar
PubMed
Close
,
Jens J Holst Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark

Search for other papers by Jens J Holst in
Google Scholar
PubMed
Close
, and
Helen L Simpson Wolfson Diabetes and Endocrinology Clinic, Institute of Metabolic Science, Cambridge University Hospitals NHS Foundation Trust, Addenbrookes Hospital, Box 281, Cambridge, CB2 0QQ, UK

Search for other papers by Helen L Simpson in
Google Scholar
PubMed
Close

Summary

Pancreatic neuroendocrine tumours (pNETs) secreting proglucagon are associated with phenotypic heterogeneity. Here, we describe two patients with pNETs and varied clinical phenotypes due to differential processing and secretion of proglucagon-derived peptides (PGDPs). Case 1, a 57-year-old woman presented with necrolytic migratory erythema, anorexia, constipation and hyperinsulinaemic hypoglycaemia. She was found to have a grade 1 pNET, small bowel mucosal thickening and hyperglucagonaemia. Somatostatin analogue (SSA) therapy improved appetite, abolished hypoglycaemia and improved the rash. Case 2, a 48-year-old male presented with diabetes mellitus, diarrhoea, weight loss, nausea, vomiting and perineal rash due to a grade 1 metastatic pNET and hyperglucagonaemia. In both cases, plasma levels of all measured PGDPs were elevated and attenuated following SSA therapy. In case 1, there was increased production of intact glucagon-like peptide 1 (GLP-1) and GLP-2, similar to that of the enteroendocrine L cell. In case 2, pancreatic glucagon was elevated due to a pancreatic α-cell-like proglucagon processing profile. In summary, we describe two patients with pNETs and heterogeneous clinical phenotypes due to differential processing and secretion of PGDPs. This is the first description of a patient with symptomatic hyperinsulinaemic hypoglycaemia and marked gastrointestinal dysfunction due to, in part, a proglucagon-expressing pNET.

Learning points

  • PGDPs exhibit a diverse range of biological activities including critical roles in glucose and amino acid metabolism, energy homeostasis and gastrointestinal physiology.

  • The clinical manifestations of proglucagon-expressing tumours may exhibit marked phenotypic variation due to the biochemical heterogeneity of their secreted peptide repertoire.

  • Specific and precise biochemical assessment of individuals with proglucagon-expressing tumours may provide opportunities for improved diagnosis and clinical management.

Open access