Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 3 of 3 items for :

  • Appetite reduction/loss x
  • Hypernatraemia x
Clear All
A Chinoy Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Search for other papers by A Chinoy in
Google Scholar
PubMed
Close
,
N B Wright Department of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester, UK

Search for other papers by N B Wright in
Google Scholar
PubMed
Close
,
M Bone Department of General Paediatrics, Royal Manchester Children’s Hospital, Manchester, UK

Search for other papers by M Bone in
Google Scholar
PubMed
Close
, and
R Padidela Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Search for other papers by R Padidela in
Google Scholar
PubMed
Close

Summary

Hypokalaemia at presentation of diabetic ketoacidosis is uncommon as insulin deficiency and metabolic acidosis shifts potassium extracellularly. However, hypokalaemia is a recognised complication of the management of diabetic ketoacidosis as insulin administration and correction of metabolic acidosis shifts potassium intracellularly. We describe the case of a 9-year-old girl with newly diagnosed type 1 diabetes mellitus presenting in diabetic ketoacidosis, with severe hypokalaemia at presentation due to severe and prolonged emesis. After commencing management for her diabetic ketoacidosis, her serum sodium and osmolality increased rapidly. However, despite maximal potassium concentrations running through peripheral access, and multiple intravenous potassium ‘corrections’, her hypokalaemia persisted. Seventy two hours after presentation, she became drowsy and confused, with imaging demonstrating central pontine myelinolysis – a rare entity seldom seen in diabetic ketoacidosis management in children despite rapid shifts in serum sodium and osmolality. We review the literature associating central pontine myelinolysis with hypokalaemia and hypothesise as to how the hypokalaemia may have contributed to the development of central pontine myelinolysis. We also recommend an approach to the management of a child in diabetic ketoacidosis with hypokalaemia at presentation.

Learning points:

  • Hypokalaemia is a recognised complication of treatment of paediatric diabetic ketoacidosis that should be aggressively managed to prevent acute complications.

  • Central pontine myelinolysis is rare in children, and usually observed in the presence of rapid correction of hyponatraemia. However, there is observational evidence of an association between hypokalaemia and central pontine myelinolysis, potentially by priming the endothelial cell membrane to injury by lesser fluctuations in osmotic pressure.

  • Consider central pontine myelinolysis as a complication of the management of paediatric diabetic ketoacidosis in the presence of relevant symptoms with profound hypokalaemia and/or fluctuations in serum sodium levels.

  • We have suggested an approach to the management strategies of hypokalaemia in paediatric diabetic ketoacidosis which includes oral potassium supplements if tolerated, minimising the duration and the rate of insulin infusion and increasing the concentration of potassium intravenously (via central line if necessary).

Open access
Lourdes Balcázar-Hernández Endocrinology Department

Search for other papers by Lourdes Balcázar-Hernández in
Google Scholar
PubMed
Close
,
Guadalupe Vargas-Ortega Endocrinology Department

Search for other papers by Guadalupe Vargas-Ortega in
Google Scholar
PubMed
Close
,
Yelitza Valverde-García Anatomic Pathology Department, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Colonia Doctores, Mexico City, Mexico

Search for other papers by Yelitza Valverde-García in
Google Scholar
PubMed
Close
,
Victoria Mendoza-Zubieta Endocrinology Department

Search for other papers by Victoria Mendoza-Zubieta in
Google Scholar
PubMed
Close
, and
Baldomero González-Virla Endocrinology Department

Search for other papers by Baldomero González-Virla in
Google Scholar
PubMed
Close

Summary

The craniopharyngiomas are solid cystic suprasellar tumors that can present extension to adjacent structures, conditioning pituitary and hypothalamic dysfunction. Within hypothalamic neuroendocrine dysfunction, we can find obesity, behavioral changes, disturbed circadian rhythm and sleep irregularities, imbalances in the regulation of body temperature, thirst, heart rate and/or blood pressure and alterations in dietary intake (like anorexia). We present a rare case of anorexia–cachexia syndrome like a manifestation of neuroendocrine dysfunction in a patient with a papillary craniopharyngioma. Anorexia–cachexia syndrome is a complex metabolic process associated with underlying illness and characterized by loss of muscle with or without loss of fat mass and can occur in a number of diseases like cancer neoplasm, non-cancer neoplasm, chronic disease or immunodeficiency states like HIV/AIDS. The role of cytokines and anorexigenic and orexigenic peptides are important in the etiology. The anorexia–cachexia syndrome is a clinical entity rarely described in the literature and it leads to important function limitation, comorbidities and worsening prognosis.

Learning points:

  • Suprasellar lesions can result in pituitary and hypothalamic dysfunction.

  • The hypothalamic neuroendocrine dysfunction is commonly related with obesity, behavioral changes, disturbed circadian rhythm and sleep irregularities, but rarely with anorexia–cachexia.

  • Anorexia–cachexia syndrome is a metabolic process associated with loss of muscle, with or without loss of fat mass, in a patient with neoplasm, chronic disease or immunodeficiency states.

  • Anorexia–cachexia syndrome results in important function limitation, comorbidities that influence negatively on treatment, progressive clinical deterioration and bad prognosis that can lead the patient to death.

  • Anorexia–cachexia syndrome should be suspected in patients with emaciation and hypothalamic lesions.

Open access
Arshpreet Kaur Division of Endocrinology Metabolism and Diabetes, University of Louisville, 550 South Jackson Street, ACB A3G11, Louisville, Kentucky, 40202, USA

Search for other papers by Arshpreet Kaur in
Google Scholar
PubMed
Close
and
Stephen J Winters Division of Endocrinology Metabolism and Diabetes, University of Louisville, 550 South Jackson Street, ACB A3G11, Louisville, Kentucky, 40202, USA

Search for other papers by Stephen J Winters in
Google Scholar
PubMed
Close

Summary

Drugs that inhibit the sodium-glucose co-transporter-2 (SGLT2) are an exciting novel, insulin-independent treatment for diabetes that block glucose reabsorption from the proximal tubules of the kidney, leading to increased glucose excretion and lower blood glucose levels. Inhibition of SGLT2 activity also reduces sodium reabsorption, which together with glycosuria produces a mild diuretic effect with the potential for dehydration and hyperkalemia. We report on a 60-year-old man with uncontrolled type 2 diabetes treated with insulin, glimepiride, metformin and canagliflozin, who was admitted with altered mental status after a syncopal episode. He had a 1-week history of ingestion of Tums for heartburn followed by poor appetite and lethargy. Laboratory work-up showed acute kidney injury, diabetic ketoacidosis (DKA), and parathyroid hormone-independent severe hypercalcemia of 17.4 mg/dl. DKA resolved with insulin treatment, and saline hydration led to improvement in hypercalcemia and renal function over 48 h, but was accompanied by a rapid increase in the serum sodium concentration from 129 to 162 mmol/l despite changing fluids to 0.45% saline. Urine studies were consistent with osmotic diuresis. Hypernatremia was slowly corrected with hypotonic fluids, with improvement in his mental status over the next 2 days. This is the first report of hypercalcemia associated with the use of a SLGT2 inhibitor. Although the exact mechanism is unknown, canagliflozin may predispose to hypercalcemia in patients ingesting excessive calcium because of dehydration from osmotic diuresis, with reduced calcium excretion and possible increased intestinal calcium absorption. Saline therapy and osmotic diuresis may lead to hypernatremia from electrolyte-free water loss.

Learning points

  • Canagliflozin, an SGLT2 inhibitor, may cause hypercalcemia in susceptible patients.

  • Although the exact mechanisms are unknown, dehydration from osmotic diuresis and increased intestinal calcium absorption play a role.

  • Close monitoring of serum calcium levels is recommended in patients treated with SGLT2 inhibitors who are elderly, have established hypercalcemia, or take oral calcium supplements.

  • Saline therapy and osmotic diuresis may lead to hypernatremia from electrolyte-free water loss in susceptible patients.

Open access