Diagnosis and Treatment > Signs and Symptoms

You are looking at 1 - 2 of 2 items for :

  • Respiratory failure x
  • Slow growth x
Clear All
Marisa M Fisher Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA

Search for other papers by Marisa M Fisher in
Google Scholar
PubMed
Close
,
Susanne M Cabrera Division of Pediatric Endocrinology, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, 9000 W. Wisconsin Avenue, PO Box 1997, Milwaukee, Wisconsin, 53201, USA

Search for other papers by Susanne M Cabrera in
Google Scholar
PubMed
Close
, and
Erik A Imel Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220, USA
Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 541 North Clinical Drive, Indianapolis, Indiana, 46202, USA

Search for other papers by Erik A Imel in
Google Scholar
PubMed
Close

Summary

Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.

Learning points

  • NSHPT due to mutations in the CASR gene occurs with hypercalcemia and metabolic bone disease, but not always with severe critical illness in infancy.

  • NSHPT should be considered in the differential diagnosis for a newborn with a bell-shaped chest, osteopenia, and periosteal reactions.

  • Neurodevelopmental consequences may occur in children with hypercalcemia and may improve during treatment.

  • Calcimimetics can be used to successfully treat the pathophysiology of NSHPT directly to control serum calcium levels.

Open access
A Deeb Paediatric Endocrinology Department, Mafraq Hospital, PO Box 2951, Abu Dhabi, United Arab Emirates

Search for other papers by A Deeb in
Google Scholar
PubMed
Close
,
O Afandi Medical School, Gulf University, Ajman, United Arab Emirates

Search for other papers by O Afandi in
Google Scholar
PubMed
Close
,
S Attia Paediatric Endocrinology Department, Mafraq Hospital, PO Box 2951, Abu Dhabi, United Arab Emirates

Search for other papers by S Attia in
Google Scholar
PubMed
Close
, and
A El Fatih Biochemistry Laboratory Department, Shaikh Khalifa Medical Center, Mafraq Hospital, Abu Dhabi, United Arab Emirates

Search for other papers by A El Fatih in
Google Scholar
PubMed
Close

Summary

3-M syndrome is a rare autosomal recessive disorder caused by mutations in the CUL7, OBSL1 and CCDC8 genes. It is characterised by growth failure, dysmorphic features and skeletal abnormalities. Data in the literature show variable efficacy of GH in the treatment of short stature. We report four Emirati siblings with the condition. The index case is a 10-year-old boy with characteristic features, including prenatal and postnatal growth failure, a triangular face, a long philtrum, full lips and prominent heels. Genetic testing confirmed a novel mutation (p.val88Ala) in the CUL7 gene. The parents are healthy, first-degree cousins with nine children, of whom two died in the first year of life with respiratory failure. Both had low birth weight and growth retardation. The boy's older sibling reached an adult height of 117 cm (−6.71 SDS). She was never treated with GH. He was started on GH treatment at 7 years of age, when his height was 94 cm (−5.3 SDS). 3-M syndrome should be considered in children with short stature who have associated dysmorphism and skeletal abnormalities. The diagnosis is more likely to occur in families that have a history of consanguinity and more than one affected sibling. Death in early infancy due to respiratory failure is another clue to the diagnosis, which might have a variable phenotype within a family. Genetic testing is important for confirming the diagnosis and for genetic counselling. GH treatment might be beneficial in improving stature in affected children.

Learning points

  • 3-M syndrome should be considered in families that have more than one sibling with short stature, particularly if there is consanguinity.

  • Syndrome phenotype might be variable within a family with the same mutation.

  • Genetic analysis is helpful in confirming diagnosis in the presence of variable siblings' phenotype.

  • GH treatment might be useful in improving stature in 3-M syndrome.

Open access