Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Dinesh Giri in
Google Scholar
PubMed
Search for other papers by Prashant Patil in
Google Scholar
PubMed
Search for other papers by Rachel Hart in
Google Scholar
PubMed
Search for other papers by Mohammed Didi in
Google Scholar
PubMed
Search for other papers by Senthil Senniappan in
Google Scholar
PubMed
Summary
Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks’ gestation with birth weight of 3.33 kg (−0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8, KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13–14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI.
Learning points:
-
Congenital hyperinsulinism (CHI) is known to be associated with various syndromes.
-
This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13–14.
-
A potential underlying genetic link between 10p13–14 duplication, PS and CHI is a possibility.
Search for other papers by Rossella Mazzilli in
Google Scholar
PubMed
Search for other papers by Michele Delfino in
Google Scholar
PubMed
Search for other papers by Jlenia Elia in
Google Scholar
PubMed
Search for other papers by Francesco Benedetti in
Google Scholar
PubMed
Search for other papers by Laura Alesi in
Google Scholar
PubMed
Search for other papers by Luciana Chessa in
Google Scholar
PubMed
Search for other papers by Fernando Mazzilli in
Google Scholar
PubMed
Summary
We report the case of a 19-year-old boy, presenting several congenital malformations (facial dysmorphisms, cardiac and musculoskeletal abnormalities), mental retardation, recurrent respiratory infections during growth and delayed puberty. Although previously hospitalised in other medical centres, only psychological support had been recommended for this patient. In our department, genetic, biochemical/hormonal and ultrasound examinations were undertaken. The karyotype was 49,XXXXY, a rare aneuploidy with an incidence of 1/85 000–100 000, characterised by the presence of three extra X chromosomes in phenotypically male subjects. The hormonal/biochemical profile showed hypergonadotropic hypogonadism, insulin resistance and vitamin D deficiency. The patient was then treated with testosterone replacement therapy. After 12 months of treatment, we observed the normalisation of testosterone levels. There was also an increase in pubic hair growth, testicular volume and penis size, weight loss, homeostatic model assessment index reduction and the normalisation of vitamin D values. Moreover, the patient showed greater interaction with the social environment and context.
Learning points
-
In cases of plurimalformative syndrome, cognitive impairment, recurrent infections during growth and, primarily, delayed puberty, it is necessary to ascertain as soon as possible whether the patient is suffering from hypogonadism or metabolic disorders due to genetic causes. In our case, the diagnosis of hypogonadism, and then of 49,XXXXY syndrome, was unfortunately made only at the age of 19 years.
-
The testosterone replacement treatment, even though delayed, induced positive effects on: i) development of the reproductive system, ii) regulation of the metabolic profile and iii) interaction with the social environment and context.
-
However, earlier and timely hormonal replacement treatment could probably have improved the quality of life of this subject and his family.