Diagnosis and Treatment > Signs and Symptoms
Search for other papers by Bronwen E Warner in
Google Scholar
PubMed
Search for other papers by Carol D Inward in
Google Scholar
PubMed
NIHR Biomedical Research Unit in Nutrition, Diet & Lifestyle, University Hospitals Bristol NHS Foundation Trust, Education Centre, Bristol, UK
Search for other papers by Christine P Burren in
Google Scholar
PubMed
Summary
This case, presenting with bilateral impalpable testes, illustrates the relevance of a broad differential disorders of sex development case management. It provides new insights on hypothalamic–pituitary–gonadal (HPG) axis and testicular function abnormalities in the multisystem disorder of Lowe syndrome. Lowe syndrome, also known as oculocerebrorenal syndrome, is a rare disorder characterised by eye abnormalities, central nervous system involvement and proximal renal tubular acidosis. There are a handful of reports of pubertal delay, infertility and cryptorchidism in Lowe syndrome. Biochemistry aged 72 h: testosterone 6.4 nmol/L, LH <0.5 IU/L and FSH <0.5 IU/L. Gonadotropin-releasing hormone stimulation test identified significantly raised baseline LH = 45.4 IU/L (contrasts with earlier undetectable LH), with a 20% increase on stimulation, while baseline FSH = 4.3 IU/L with no increase on stimulation. Day 14 HCG stimulation test produced an acceptable 50% increase in testosterone. The constellation of further abnormalities suggested Lowe syndrome: hypotonia, bilateral cataracts (surgical extraction and intraocular lens implantation) and renal tubular acidosis (microscopic haematuria, hypercalciuria, proteinuria, generalised aminoaciduria, hypophosphataemia and metabolic acidosis). DNA sequencing identified de novo hemizygous frameshift mutation OCRL c.2409_2410delCT in exon 22. Interpretation of initial and repeat GnRH and HCG testing indicates the likelihood of testicular failure. Partial testicular descent occurred but left orchidopexy was required. Improving long-term gonadal function in Lowe syndrome assumes increased importance for current cohorts as advances in renal replacement therapy have greatly improved life expectancy. Noting HPG axis abnormalities in Lowe syndrome in infancy can identify cases requiring increased surveillance of pubertal progress for earlier detection and management.
Learning points:
-
Clinical endocrine problems in Lowe syndrome has been reported, but has focused on abnormalities in adolescence and young adulthood: pubertal delay and infertility.
-
We present an infant with isolated LH elevation at baseline and on GnRH stimulation testing who also had bilateral impalpable testes.
-
Early testing of the HPG axis in patients with Lowe syndrome may help predict gonadal abnormalities from a younger age, which will enhance the overall case management into adolescence.
Search for other papers by Marisa M Fisher in
Google Scholar
PubMed
Search for other papers by Susanne M Cabrera in
Google Scholar
PubMed
Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 541 North Clinical Drive, Indianapolis, Indiana, 46202, USA
Search for other papers by Erik A Imel in
Google Scholar
PubMed
Summary
Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.
Learning points
-
NSHPT due to mutations in the CASR gene occurs with hypercalcemia and metabolic bone disease, but not always with severe critical illness in infancy.
-
NSHPT should be considered in the differential diagnosis for a newborn with a bell-shaped chest, osteopenia, and periosteal reactions.
-
Neurodevelopmental consequences may occur in children with hypercalcemia and may improve during treatment.
-
Calcimimetics can be used to successfully treat the pathophysiology of NSHPT directly to control serum calcium levels.