Diagnosis and Treatment > Signs and Symptoms > Hypospadias
You are looking at 1 - 2 of 2 items
Search for other papers by M A Shehab in
Google Scholar
PubMed
Search for other papers by Tahseen Mahmood in
Google Scholar
PubMed
Search for other papers by M A Hasanat in
Google Scholar
PubMed
Search for other papers by Md Fariduddin in
Google Scholar
PubMed
Search for other papers by Nazmul Ahsan in
Google Scholar
PubMed
Search for other papers by Mohammad Shahnoor Hossain in
Google Scholar
PubMed
Search for other papers by Md Shahdat Hossain in
Google Scholar
PubMed
Search for other papers by Sharmin Jahan in
Google Scholar
PubMed
Summary
Congenital adrenal hyperplasia (CAH) due to the three-beta-hydroxysteroid-dehydrogenase (3β-HSD) enzyme deficiency is a rare autosomal recessive disorder presenting with sexual precocity in a phenotypic male. Klinefelter syndrome (KS) is the most common sex chromosome aneuploidy presenting with hypergonadotropic hypogonadism in a male. However, only a handful of cases of mosaic KS have been described in the literature. The co-existence of mosaic KS with CAH due to 3β-HSD enzyme deficiency portrays a unique diagnostic paradox where features of gonadal androgen deficiency are masked by simultaneous adrenal androgen excess. Here, we report a 7-year-old phenotypic male boy who, at birth presented with ambiguous genitalia, probably a microphallus with penoscrotal hypospadias. Later on, he developed accelerated growth with advanced bone age, premature pubarche, phallic enlargement and hyperpigmentation. Biochemically, the patient was proven to have CAH due to 3β-HSD deficiency. However, the co-existence of bilateral cryptorchidism made us to consider the possibility of hypogonadism as well, and it was further explained by concurrent existence of mosaic KS (47,XXY/46,XX). He was started on glucocorticoid and mineralocorticoid replacement and underwent right-sided orchidopexy on a later date. He showed significant clinical and biochemical improvement on subsequent follow-up. However, the declining value of serum testosterone was accompanied by rising level of FSH thereby unmasking hypergonadotropic hypogonadism due to mosaic KS. In future, we are planning to place him on androgen replacement as well.
Learning points:
-
Ambiguous genitalia with subsequent development of sexual precocity in a phenotypic male points towards some unusual varieties of CAH.
-
High level of serum testosterone, adrenal androgen, plasma ACTH and low basal cortisol are proof of CAH, whereas elevated level of 17-OH pregnenolone is biochemical marker of 3β-HSD enzyme deficiency.
-
Final diagnosis can be obtained with sequencing of HSD3B2 gene showing various mutations.
-
Presence of bilateral cryptorchidism in such a patient may be due to underlying hypogonadism.
-
Karyotyping in such patient may rarely show mosaic KS (47,XXY/46,XX) and there might be unmasking of hypergonadotropic hypogonadism resulting from adrenal androgen suppression from glucocorticoid treatment.
Division of Pediatric Endocrinology, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Anil Piya in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Jasmeet Kaur in
Google Scholar
PubMed
Augusta University School of Medicine, Augusta, Georgia, USA
Search for other papers by Alan M Rice in
Google Scholar
PubMed
Anderson Cancer Institute, Memorial University Medical Center, Savannah, Georgia, USA
Search for other papers by Himangshu S Bose in
Google Scholar
PubMed
Summary
Cholesterol transport into the mitochondria is required for synthesis of the first steroid, pregnenolone. Cholesterol is transported by the steroidogenic acute regulatory protein (STAR), which acts at the outer mitochondrial membrane prior to its import. Mutations in the STAR protein result in lipoid congenital adrenal hyperplasia (CAH). Although the STAR protein consists of seven exons, biochemical analysis in nonsteroidogenic COS-1 cells showed that the first two were not essential for pregnenolone synthesis. Here, we present a patient with ambiguous genitalia, salt-lossing crisis within two weeks after birth and low cortisol levels. Sequence analysis of the STAR, including the exon–intron boundaries, showed the complete deletion of exon 1 as well as more than 50 nucleotides upstream of STAR promoter. Mitochondrial protein import with the translated protein through synthesis cassette of the mutant STAR lacking exon 1 showed protein translation, but it is less likely to have synthesized without a promoter in our patient. Thus, a full-length STAR gene is necessary for physiological mitochondrial cholesterol transport in vivo.
Learning points:
-
STAR exon 1 deletion caused lipoid CAH.
-
Exon 1 substitution does not affect biochemical activity.
-
StAR promoter is responsible for gonadal development.