Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Bronwyn Crawford x
Clear All Modify Search
Open access

Benjamin Kwan, Bernard Champion, Steven Boyages, Craig F Munns, Roderick Clifton-Bligh, Catherine Luxford and Bronwyn Crawford

Summary

Autosomal dominant hypocalcaemia type 1 (ADH1) is a rare familial disorder characterised by low serum calcium and low or inappropriately normal serum PTH. It is caused by activating CASR mutations, which produces a left-shift in the set point for extracellular calcium. We describe an Australian family with a novel heterozygous missense mutation in CASR causing ADH1. Mild neuromuscular symptoms (paraesthesia, carpopedal spasm) were present in most affected individuals and required treatment with calcium and calcitriol. Basal ganglia calcification was present in three out of four affected family members. This case highlights the importance of correctly identifying genetic causes of hypocalcaemia to allow for proper management and screening of family members.

Learning points:

  • ADH1 is a rare cause of hypoparathyroidism due to activating CASR mutations and is the mirror image of familial hypocalciuric hypercalcaemia.

  • In patients with ADH1, symptoms of hypocalcaemia may be mild or absent. Basal ganglia calcification may be present in over a third of patients.

  • CASR mutation analysis is required for diagnostic confirmation and to facilitate proper management, screening and genetic counselling of affected family members.

  • Treatment with calcium and activated vitamin D analogues should be reserved for symptomatic individuals due to the risk of exacerbating hypercalciuria and its associated complications.

Open access

Lauren J Baker, Anthony J Gill, Charles Chan, Betty P C Lin and Bronwyn A Crawford

Summary

In 2006, a 58-year-old woman presented with thyrotoxicosis. She had undergone left hemithyroidectomy 14 years before for a benign follicular adenoma. Ultrasound imaging demonstrated bilateral cervical lymphadenopathy with enhanced tracer uptake in the left lateral neck on a Technetium-99m uptake scan. Fine-needle aspiration biopsy of a left lateral neck node was insufficient for a cytological diagnosis; however, thyroglobulin (Tg) washings were strongly positive. The clinical suspicion was of functionally active metastatic thyroid cancer in cervical lymph nodes. A completion thyroidectomy and bilateral cervical lymph node dissection were performed. Histology demonstrated benign multinodularity in the right hemithyroid, with bilateral reactive lymphadenopathy and 24 benign hyperplastic thyroid nodules in the left lateral neck that were classified as parasitic thyroid nodules. As there had been a clinical suspicion of thyroid cancer, and the hyperplastic/parasitic thyroid tissue in the neck was extensive, the patient was given ablative radioactive iodine (3.7 GBq). After 2 years, a diagnostic radioactive iodine scan was clear and the serum Tg was undetectable. The patient has now been followed for 7 years with no evidence of recurrence. Archived tissue from a left lateral neck thyroid nodule has recently been analysed for BRAF V600E mutation, which was negative.

Learning points

  • Thyrotoxicosis due to functional thyroid tissue in the lateral neck is very rare and may be due to metastatic thyroid cancer or benign parasitic thyroid tissue.

  • Parasitic thyroid nodules should be considered as a differential diagnosis of lateral neck thyroid deposits, particularly where there is a history of prior thyroid surgery.

  • Parasitic thyroid nodules may occur as a result of traumatic rupture or implantation from a follicular adenoma at the time of surgery.

  • The use of ablative radioactive iodine may be appropriate, as resection of all parasitic thyroid tissue can prove difficult.

  • BRAF mutational analysis of parasitic thyroid tissue may provide extra reassurance in the exclusion of papillary thyroid carcinoma.